Home
Class 10
MATHS
a=9-4sqrt(5) ,sqrt(a)-1/sqrt(a)=?...

`a=9-4sqrt(5)` ,`sqrt(a)-1/sqrt(a)=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(4sqrt(-5)-1)=

3sqrt(2^(5))sqrt(4^(9))sqrt(8)=

(1)/(sqrt(9)-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-sqrt(4))=?

What is the value of (1/(sqrt(9) - sqrt(8)) - 1/(sqrt(8) - sqrt(7)) + 1/(sqrt(7) - sqrt(6)) - 1/(sqrt(6) - sqrt(5)) + 1/(sqrt(5) - sqrt(4))) ?

The greatest among sqrt(7) - sqrt(5) , sqrt(5) - sqrt(3) , sqrt(9) - sqrt(7) , sqrt(11) - sqrt(9) is

(1)/(4sqrt(3)-3sqrt(5))

The value of {1/((sqrt(6) - sqrt(5))) + 1/((sqrt(5) + sqrt(4))) + 1/((sqrt(4) + sqrt(3))) - 1/((sqrt(3) - sqrt(2))) + 1/((sqrt(2) - 1))} is :

If (1)/(sqrt(b)+sqrt(c)),(1)/(sqrt(c)+sqrt(a)),(1)/(sqrt(a)+sqrt(b)) are in A.P.,then 9^(9x+1),9^(bx+1),9^(cx+1),x!=0 are in

Simplify (i) (4+ sqrt(5))/(4-sqrt(5))+(4-sqrt(5))/(4+sqrt(5)) (ii) (1)/(sqrt(3) + sqrt(2)) - (2)/(sqrt(5)-sqrt(3)) -(2)/(sqrt(2) - sqrt(5)) (iii) (2+sqrt(3))/(2-sqrt(3)) + (2-sqrt(3))/(2+sqrt(3)) + (sqrt(3)-1)/(sqrt(3)+1) (iv) (2+sqrt(6))/(sqrt(2)+sqrt(3))+(6sqrt(2))/(sqrt(6)+sqrt(3)) -(8sqrt(3))/(sqrt(6)+sqrt(2))