Home
Class 12
MATHS
C0 - 3C1 + 5 c3 +....+(-1)^n (2n+1) Cn i...

`C_0 - 3C_1 + 5 c_3 +....+(-1)^n (2n+1) C_n` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

C_(0)-C_(1)+C_(2)-C_(3)+ . . .+(-1)^(n)C_(n) is equal to

If C_(0),C_(1),C_(2),C_(3), . . .,C_(n) be binomial coefficients in the expansion of (1+x)^(n) , then Q. The value of the expression C_(0)-2C_(1)+3C_(2)-. . . .+(-1)^(n)(n+1)C_(n) is equal to

If C_(0),C_(1),C_(2),C_(3), . . .,C_(n) be binomial coefficients in the expansion of (1+x)^(n) , then Q. The value of the expression C_(0)-2C_(1)+3C_(2)-. . . .+(-1)^(n)(n+1)C_(n) is equal to

Show that C_0 + 3C_1 + 5C_2 + .... +(2n+1) C_n = (n+1)(2^n)

C_0 - [C_1 -2.C_2+ 3.C_3-……..+(-1)^(n-1).n.C_n] =

(1+ (C_1)/(C_0)) (1+(C_2)/(C_3) )....(1+(C_n)/(C_(n-1))) is equal to : a) (n+1)/(n!) b) ((n+1)^(n))/((n-1)!) c) ((n-1)^(n))/(n!) d) ((n+1)^(n))/(n!)

Show that C_0 C_1 + C_1 C_2 + C_2 C_3 + .... + C_(n-1) C_n = (2n!)/((n-1)!(n+1!))