Home
Class 11
MATHS
If lx + my -1 = 0 touches the circle x^2...

If lx + my -1 = 0 touches the circle `x^2 + y^2 = a^2` then the point (l,m) lies on the circle

Promotional Banner

Similar Questions

Explore conceptually related problems

If lx + my = 1 touches the circle x^2 + y^2 = a^2 , prove that the point (l, m) lies on the circle x^2 + y^2 = a^(-2)

If 1x+my-1=0 touches the circle x^(2)+y^(2)=a^(2) then the point (1,m) lies on the circle

If lx+my=1 touches the circle x^(2)+y^(2)=a^(2) , prove that the point (l,m) lies on the circle x^(2)+y^(2)=a^(-2)

If lx+my=1 touches the circle x^(2)+y^(2)=a^(2) , prove that the point (l,m) lies on the circle x^(2)+y^(2)=a^(-2)

If lx+my=1 touches the circle x^(2)+y^(2)=a^(2) , prove that the point (l,m) lies on the circle x^(2)+y^(2)=a^(-2)

If the line lx + my = 1 is a tangent to the circle x^(2) + y^(2) = a^(2) , then the point (l,m) lies on a circle.

If the line l x+m y-1=0 touches the circle x^2+y^2=a^2 , then prove that (l , m) lies on a circle.

If the line l x+m y-1=0 touches the circle x^2+y^2=a^2 , then prove that (l , m) lies on a circle.

If the line lx+my-1=0 touches the circle x^(2)+y^(2)=a^(2), then prove that (l,m) lies on a circle.