Home
Class 14
MATHS
Trigonometric identities (i) cot^4(thet...

Trigonometric identities (i) `cot^4(theta) +cot^2(theta) = cosec^4(theta) - cosec^2(theta) `

Promotional Banner

Similar Questions

Explore conceptually related problems

Trigonometric identities (i) cot^(4)(theta)+cot^(2)(theta)=cos ec^(4)(theta)-cos ec^(2)(theta)

Prove that cot^4 theta+ cot^2 theta= cosec^4 theta-cosec^2 theta

If cot^4 theta+ cot^2 theta=3 then cosec^4 theta- cosec^2 theta = ?

cosec^(4)theta+cot^(2)theta+cosec^(2)theta)"=

csc^(6)theta-cot^(6)theta=1+3csc^(2)theta cot^(2)theta

cosec^2 theta - cot^2 theta = 1 +…..

cosec^(6)theta-cot^(6)theta-3cot^(2)theta.cosec^(2)theta=?

cosec^(2)theta=1+cot^(2)theta

cosec^(2)theta-cot^(2)theta-1

Prove that (cot^(2)theta)/(cosec theta+1)=cosec theta-1