Home
Class 12
MATHS
f(x) = max ( sinx, cosx) ,xepsilonR. The...

`f(x) = max ( sinx, cosx) ,xepsilonR.` Then number of critical points `epsilon (-2pi, 2pi)` is/are (i) `5` (ii) `7` (iii) `9` (iv) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=max{sinx,cosx}AA"x"inR then number of critical points of f(x) in (0,2pi) is

The number of critical points of f(x)=max{sinx,cosx},AAx in(-2pi,2pi), is

The number of critical points of f(x)=max{sinx,cosx},AAx in(-2pi,2pi), is

The number of critical points of f(x)=max{sinx,cosx},AAx in[-2pi,2pi], is

The number of stationary points of f(x) = cosx in [0,2pi] are

if f(x)= sinx + cosx for 0 < x < pi/2

If f(x)=|x^(2)-3x+2|+|sinx| then number of points where f(x) is not differentiable in [-pi,pi] is

If f(x) = -4sinx+cosx for x =pi/2 is continuous then

The argument of -I is: (i) pi (ii) -pi (iii) -(pi)/2 (iv) (pi)/2

If n=2m+1,m in N uu {0}, then int_0^(pi/2)(sin nx)/(sin x) dx is equal to (i) pi (ii) pi/2 (iii) pi/4 (iv) none of these