Home
Class 12
MATHS
If x1,x2,x3,x4,x5,x6 all are independent...

If `x_1,x_2,x_3,x_4,x_5,x_6` all are independent then the maximum and minimum values of `[sin^(-1)x_1]+[cos^(-1)x_2]+[tan^(-1)x_3]+[cot^(-1)x_4]+[sec^(-1)x_5]+[cosec^(-1)x_6]`, where [] represents greatest integer function, respectively are

Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum and minimum values of f(x)=sin^(-1)x+cos^(-1)x+tan^(-1)x respectively is

The maximum and minimum values of f(x)=sin^(-1)x+cos^(-1)x+tan^(-1)x respectively is

Find x satisfying [tan^(-1)x]+[cos^(-1)x]=2, where [] represents the greatest integer function.

Find x satisfying [tan^(-1)x]+[cot^(-1)x]=2, where [] represents the greatest integer function.

Find x satisfying [tan^(-1)x]+[cot^(-1)x]=2, where [.] represents the greatest integer function.

Find x satisfying [tan^(-1)x]+[cot^(-1)x]=2, where [.] represents the greatest integer function.

Find x satisfying [tan^(-1)x]+[cot^(-1)x]=2 where [| represents the greatest integer function.

Th ascending order of minimum values of functions P: sin^(-1)x-cos^(-1)x Q:tan^(-1)x+cot^(-1)x R:sec^(-1)x-cosec^(-1)x is

Find the maximum and minimum values of (sin^(-1)x)^(3)+(cos^(-1)x)^(3), where -1<=x<=1

The sum of the maximum and minimum values of the function f(x)=sin^(-1)4x+cos^(-1)4x+sec^(-1)4x is