Home
Class 12
MATHS
the value of lim(x->0) (e^x+log(1+x)-(1-...

the value of `lim_(x->0) (e^x+log(1+x)-(1-x)^-2)/x^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr 0) (e^x+log (1+x)-(1-x)^-2)/(x^2) is equal to

The value of lim_(xrarr 0) (e^x+log (1+x)-(1-x)^-2)/(x^2) is equal to

(7) Find the value of lim_(x->0) ((e^(x)-1) log(1+x))/(x^(2))

Find the value of lim_(x->0)(7^(x)-1)^(2)/(x log(1+x))

The value of lim_(x to 0) ((e^x-1)log(1+x))/sin^2x is equal to

The value of lim_(xrarr0) (log_e(1+x)-x)/(x{(1+x)^(1//x)-e}) equal to

The value of lim_(xrarr0) (log_e(1+x)-x)/(x{(1+x)^(1//x)-e}) equal to

The value of lim_(x to 0)(e^(2x)-1)/(x) is :