Home
Class 12
MATHS
int dx/(cos^3x sqrt(2sin2x))=(tanx)^A+C(...

`int dx/(cos^3x sqrt(2sin2x))=(tanx)^A+C(tanx)^B+k` where k is the constant of integration, then A+B+C = (A) 16/5 (B) 21/5 (C) 7/10 (D) 27/10

Promotional Banner

Similar Questions

Explore conceptually related problems

If int(dx)/(cos^(3)xsqrt(2sin2x))=(tanx)^(A)+C(tanx)^(B)+K where K is a constant of integration, then A+B+C is equal to

If int(1)/(cos^(3)xsqrt(2 sin2x))dx=(tanx)^(A)+C(tanx)^(B)+k , where k is a constant of integration , the A+B+C equals

If int (dx)/(cos^(3) x sqrt(2 sin 2x)) = (tan x)^(A) + C(tan x)^(B) + k , where K is a costant of integration , then A+B + C equls :

"I f"int(dx)/(cos^3xsqrt(sin2x))=a(tan^2x+b)sqrt(tanx)+c

"I f"int(dx)/(cos^3xsqrt(sin2x))=a(tan^2x+b)sqrt(tanx)+c

int(dx)/(cos^(3)x sqrt(2sin2x))=(tan x)^(A)+C(tan x)^(B)+k where k sqrt(2sin2x)A+B+C=(A)16/5(B)21/5(C)7/10(D)27/10

int5^(x)((1+sin x*cos x*ln5)/(cos^(2)x))dx= ( where c is the constant of integration)

int("sin"(5x)/(3))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)

int("sin"(5x)/(3))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)