Home
Class 12
MATHS
if I=int(log(t+sqrt(1+t^2)))/sqrt(1+t^2)...

if `I=int(log(t+sqrt(1+t^2)))/sqrt(1+t^2)dt=1/2(g(t))^2+c` then `g(2)` is (A) `2 log(2+sqrt5)` (B) `log (2 + sqrt 5)` (C) `1/sqrt5 log (2 + sqrt5)` (D) `1/2 log ( 2 + sqrt 5)`

Promotional Banner

Similar Questions

Explore conceptually related problems

log ( 7 + 5 sqrt2) =

log_((sqrt(2)+1))(sqrt(2)-1)=

I=int_(0)^(-1)(t ln t)/(sqrt(1-t^(2)))dt=

log((sqrt2-1)/(sqrt2+1))

If int (log(t+sqrt(1+t^(2))))/(sqrt(1+t^(2)))dt=(1)/(2)(g(t))^(2)+C , where C is a constant, then g(2) is equal to:

sinh [ log (2+sqrt5)] +cosh [log (2+sqrt3)]=

(ii) log_(sqrt(5)+1)(6+2sqrt(5))

int (1)/( x sqrt( (log x)^(2) - 5 ) ) dx is

If : int_(ln 2)^(x)(1)/(sqrt(e^(t)-1))dt=(pi)/(6) , then : x =

int(1)/(sqrt(x^(2)-a^(2)))=log(x+sqrt(x^(2)-a^(2))+c