Home
Class 9
MATHS
((3)/(5))^(x)((5)/(3))^(2x)=(125)/(27)...

((3)/(5))^(x)((5)/(3))^(2x)=(125)/(27)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x. (root(3)((3)/(5)))^(2x + 1) = (125)/(27)

Find x, if : (sqrt((3)/(5)))^(x+1)=(125)/(27)

Solve for following equations for x:(i)5^(2x+3)=1(ii)(sqrt((3)/(5)))^(x+1)=(125)/(27)

Find the value of x in each of the following: 5^(2x+3)=1 (ii) (13)^(sqrt(x))=4^(4)-3^(4)-6(sqrt((3)/(5)))^(x+1)=(125)/(27)

Show that (-(5)/(3))^(3)=-(125)/(27)

If (3)/(7) + x +((-8)/(21)) +(5)/(22) =(-125)/(462) , then x is

Evaluate for x (sqrt((5)/(3)))^(x-8)=((27)/(125))^(2x-3)

if the sum of the series 2+(5)/(x)+(25)/(x^(2))+(125)/(x^(3))+......... Is finite then

Find the value of x in each of the following: (i)\ 5^(2x+3)=1 (ii)\ (13)^(sqrt(x))=4^4-3^4-6 (iii)\ (sqrt(3/5))^(x+1)=(125)/(27)

Solve the equation for x:2^(3)(5^(0)+3^(2x))=8(8)/(27)