Home
Class 13
MATHS
" Prove that कि- "sin^(2)24'-sin^(2)6'=(...

" Prove that कि- "sin^(2)24'-sin^(2)6'=(sqrt(5)-1)/(8)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^(2)24^(0)-sin^(2)6^(0)=(sqrt(5)-1)/(8)

Prove that: sin^(2)24^(0)-sin^(2)6^(0)=(sqrt(5)-1)/(8)

Prove that sin^(2)24^(@)-sin^(2)6^(@)

Provet that: sin^(2)72^(2)-sin^(2)60^(2)=(sqrt(5)-1)/(8)

Prove that: sin^2 24^0-sin^2 6^0=(sqrt(5)-1)/8

Prove that: sin^2 24^0-sin^2 6^0=(sqrt(5)-1)/8

Prove that: sin^2 24^0-sin^2 6^0=(sqrt(5)-1)/8

Prove that: (i) "sin"^(2)24^(@)-"sin"^(2)6^(@)=(1)/(8)(sqrt(5)-1) (ii) "tan"9^(@)-"tan"27^(@)-"tan"63^(@)+"tan"81^(@)=4 .

Prove that : sin^2 72^@- sin^2 60^@= (sqrt5-1)/8 .

Prove that: sin^(2)(72^(@))-sin^(2)(60^(@))=(sqrt(5)-1)/(8)