Home
Class 11
MATHS
" If "tan^(-1)x+tan^(-1)y+tan^(-1)z=pi,"...

" If "tan^(-1)x+tan^(-1)y+tan^(-1)z=pi," then "x+y+z" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/2 then

Prove the followings : If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi then x+y+z=xyz .

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi, show that x + y + z = xyz.

If tan ^(-1) x + tan ^(-1) y + tan ^(-1) z = (pi)/(2), then xy + yz+zx is equal to

If tan^-1x+tan^-1y+tan^-1z=pi ,show that x+y+z=xyz

If tan^(-1)x+ tan^(-1)y + tan^(-1)z = pi , prove that x + y + z = xyz .