Home
Class 12
MATHS
" The value of "tan^(-1)((m)/(n))-tan^(-...

" The value of "tan^(-1)((m)/(n))-tan^(-1)((m-n)/(m+n))=

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((m)/(n))-tan^(-1)((m-n)/(m+n))=(pi)/(4).

tan^(-1)(m/n)+tan^(-1)((n-m)/(n+m))=?

Prove that: "tan"^(-1)(m)/(n)-tan^(-1)((m-n)/(m+n))=(pi)/(4). m, n gt 0

Show that 'tan ^(-1) (m/n)-tan ^(-1) ((m-n)/(m+n))=pi/4'

Prove that: tan^(-1)((m)/(n))+tan^(-1)((n-m)/(n+m))=[(pi)/(4)(m)/(n)>;-1(-3 pi)/(4)(m)/(n)<-1

Prove that: tan^(-1)(m/n)+tan^(-1)((n-m)/(n+m))=pi/4

tan^(-1)""(m)/(n)-tan^(-1)""(m-n)/(m+n) is equal to a) tan^(-1)""(n)/(m) b) tan^(-1)""(m+n)/(m-n) c) (pi)/(4) d) tan^(-1)((1)/(2))

Prove that: tan^(-1)(m/n)+tan^(-1)((n-m)/(n+m))=[pi/4; m^(2)/n^(2) > -1

The value of sum_(m=1)^(n) "tan"^(-1)((2m)/(m^(4) + m^(2) +2 )) is :