Home
Class 11
MATHS
(1)^(2)1+3+5+dots+(2n-1)=n^(2)...

(1)^(2)1+3+5+dots+(2n-1)=n^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ((2n+1)!)/(n!)=2^(n){1.3.5(2n-1)(2n+1)}

(1)/(2n^(2)-1)+(1)/(3(2n^(2)-1)^(3))+(1)/(5(2n^(2)-1)^(5))+....=

(1^(3)+2^(3)+...+n^(3))/(1+3+5+...+(2n-1))=((n+1)^( 2))/(4)

Find the sum of series upto n terms ((2n+1)/(2n-1))+3((2n+1)/(2n-1))^(2)+5((2n+1)/(2n-1))^(3)+

((2n)/(n^(2)+1))+(1)/(3)((2n)/(n^(2)+1))^(3)+(1)/(5)((2n)/(n^(2)+1))^(5)+....=

The value of lim_(n->oo)[(2n)/(2n^2-1)cos(n+1)/(2n-1)-n/(1-2n)dot(n(-1)^n)/(n^2+1)]i s 1 (b) -1 (c) 0 (d) none of these

The value of (lim_(n->oo)[(2n)/(2n^2-1)cos(n+1)/(2n-1)-n/(1-2n)dot(n(-1)^n)/(n^2+1)]i s 1 (b) -1 (c) 0 (d) none of these