Home
Class 11
MATHS
tan x + tan (x+pi/3)+ tan(x+2pi/3) = 3 p...

`tan x + tan (x+pi/3)+ tan(x+2pi/3) = 3` prove that `( 3tanx-tan^3 x)/(1-3 tan^2x) = 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan 3x=(3tanx-tan^3x)/(1-3tan^2x)

If tanx+tan(x+pi/3)+tan(x+(2pi)/3)=3 then prove that (3tanx-tan^3x)/(1-3tan^2x)=1

If t a n x+tan(x+pi/3)+tan(x+(2pi)/3)=3, then prove that (3tanx-t a n^3x)/(1-3t a n^2x)=1 .

Prove that tan 3x= (3tan x-tan^3 x)/(1-3tan^2 x)

If tan x+tan(x+(pi)/(3))+tan(x+(2 pi)/(3))=3 then prove that (3tan x-tan^(3)x)/(1-3tan^(2)x)=1

Prove that : tan 3x=(3tanx-tan^(3)x)/(1-3tan^(2)x)

Solve : tanx+tan(x+pi/3)+tan(x+(2pi)/3)=3

Solve (tan3x-tan2x)/(1+tan3x tan2x')=1

Show that tan 3 x=(3 tan x-tan ^(3) x)/(1-3 tan ^(2) x)

Solve (tan 3x - tan 2x)/(1+tan 3x tan 2x)=1 .