Home
Class 11
MATHS
lim(x->0) [ ln(1+sin^2x) cot ln^2(1+x)]...

`lim_(x->0) [ ln(1+sin^2x) cot ln^2(1+x)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0)[ln(1+sin^(2)x)cot ln^(2)(1+x)] is :

lim_(x->0)log(1+2x)/x

lim_(x rarr0)(ln(sin2x))/(ln(sin x)) is equals to a.0 b.1 c.2 d.non x rarr0ln(sin x) existent

lim_(x rarr0)(1+sin x-cos x+ln(1-x))/(x*tan^(2)x)

lim_(x=0)(log_(sin x)cos x)/(log_(sin((x)/(2)))cos((x)/(2)))

lim_(x rarr 0) 2/x log (1+x) =

the value of lim_(x->0){(cosx)^(1/(sin^2x))+(sin2x+2tan^-13x+3x^2)/(ln(1+3x+sin^2x)+xe^x)}

The value of lim_(x rarr oo)(|x^(2)|+x)log(x cot^(-1)x) is :