Home
Class 11
MATHS
lim(n rarr oo){cos((x)/(2))cos((x)/(4))c...

lim_(n rarr oo){cos((x)/(2))cos((x)/(4))cos((x)/(8))dots dots cos((x)/(2^(n)))}" is cqual to "

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(n rarr oo){cos((x)/(2))cos((x)/(4))cos((x)/(8))...cos((x)/(2^(n)))}

Evaluate lim_(ntooo) {cos((x)/(2))cos((x)/(4))cos((x)/(8))...cos((x)/(2^(n)))} .

Evaluate lim_(ntooo) {cos((x)/(2))cos((x)/(4))cos((x)/(8))...cos((x)/(2^(n)))} .

Lim_(x to 0){"cos"((x)/(2))cos((x)/(4))cos((x)/(8))....cos((x)/(2^(n)))}=

lim_(x rarr oo)((cos x)/x)

The value of lim_(n rarr oo) cos ((x)/(2)) cos ((x)/(4))cos ((x)/(8))…...cos((x)/(2^(n))) is

The value of lim_(nrarroo)(cos.(x)/(2)cos.(x)/(4)cos.(x)/(8)………cos.(x)/(2^(n+1))) is equal to

The value of lim_(nrarroo)(cos.(x)/(2)cos.(x)/(4)cos.(x)/(8)………cos.(x)/(2^(n+1))) is equal to

Evaluate :lim_(n rarr oo)(cos((x)/(2))cos((x)/(2^(2)))cos((x)/(2^(3)))......cos((x)/(2^(n))))

lim_ (n rarr oo) cos (x) / (2) * cos (x) / (4) * cos (x) / (8) ...... cos (x) / (2 ^ (n))