Home
Class 12
MATHS
If eta=x^(3)log(0)" prove that "(d^(4)y)...

If eta=x^(3)log_(0)" prove that "(d^(4)y)/(dx^(4))=(6)/(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x^(3)log x, prove that (d^(4)y)/(dx^(4))=(6)/(x)

If y=x^(3)log x, prove that(d^(4))/(dx^(4))=(6)/(x)

If y=x^(3)log((1)/(x)) , prove that (d^(2)y)/(dx^(2))-(2)/(x)(dy)/(dx)+3x=0 .

If y=x^3logx , prove that (d^4y)/(dx^4)=6/x .

If y=x^3logx ,"prove that"(d^4y)/(dx^4)=6/xdot

If y=log(1+cos x), prove that (d^(3)y)/(dx^(3))+(d^(2)y)/(dx^(2))(dy)/(dx)=0

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=x sin(log x)+x log x, prove that x^(2)(d^(2)y)/(dx^(2))-x(dy)/(dx)+2y=x log x

If y=A cos(log x)+B sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0