Home
Class 12
MATHS
(int(0)^(4 pi)e^(t)(sin^(6)at+cos^(4)at)...

(int_(0)^(4 pi)e^(t)(sin^(6)at+cos^(4)at)dt)/(int_(0)^( pi)e^(t)(sin^(6)at+cos^(4)at)dt)=L?

Promotional Banner

Similar Questions

Explore conceptually related problems

The options(s) with the values of a and L that satisfy the following equation is(are) (int_(0)^(4pi)e^(t)(sin^(6)at+cos^(4)at)dt)/(int_(0)^(pi)e^(t)(sin^(6)at+cos^(4)at)dt)=L?

int_ (0)^(4 pi) e^(t) (sin^(6) at+cos^(4) at) dtint_ (0)^(pi) e^(t) (sin^(6) at+ cos^(4) at) dta = 2, L = (e^(4 pi) -1)/(e^(pi) -1) (ii) a = 2, L = (e^(4 pi)+ 1)/(e^(pi) +1) (iii) a = 4, L = (e^(4 pi) -1)/(e^(pi) -1) (iv) a = 4, L = (e^(4 pi) +1)/(e^(pi) +1)

The option(s) with the values of a and L that satisfy the following equation is (are) (int_0^(4pi)e^t(sin^6at+cos^4at)dt)/(int_0^pi e^t(sin^6at+cos^4at)dt)=L

The option(s) with the values of aa n dL that satisfy the following equation is (are) (int_0 ^(4pi)e^t(sin^6a t+cos^4at)dt)/(int_0^pie^t(sin^6at+cos^4a t)dt)=L

The option(s) with the values of a and L that satisfy the following equation is (are) (int_0^(4pi) e^t(sin^6 at +cos^4 at)dt)/(int_0^pi e^t (sin^6 at +cos^4 at)dt)=L

The option(s) with the values of a and L that satisfy the following equation is (are) (int_0^(4pi) e^t(sin^6 at +cos^4 at)dt)/(int_0^pi e^t (sin^6 at +cos^4 at)dt)=L

The option(s) with the values of a and L that satisfy the following equation is (are) (int_0^(4pi) e^t(sin^6 at +cos^4 at)dt)/(int_0^pi e^t (sin^6 at +cos^4 at)dt)=L

int_(0)^(2 pi)[sin t]dt

int_ (0) ^ (2 pi) sin ^ (4) x cos ^ (6) xdx

int_ (0) ^ (pi) x sin ^ (6) x cos ^ (4) xdx = (pi) / (2) int_ (0) ^ (pi) sin ^ (6) x cos ^ (4) xdx