Home
Class 12
MATHS
If x=sqrt(a^(sin^(-1)t)), y=sqrt(a^(cos^...

If `x=sqrt(a^(sin^(-1)t)), y=sqrt(a^(cos^(-1)t))`, show that `(dy)/(dx)=-y/x`

Text Solution

AI Generated Solution

To solve the problem, we need to show that \(\frac{dy}{dx} = -\frac{y}{x}\) given the equations \(x = \sqrt{a^{\sin^{-1} t}}\) and \(y = \sqrt{a^{\cos^{-1} t}}\). ### Step 1: Differentiate \(x\) with respect to \(t\) Given: \[ x = \sqrt{a^{\sin^{-1} t}} = a^{\frac{1}{2} \sin^{-1} t} \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise EXERCISE 5.2|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise EXERCISE 5.1|34 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise SOLVED EXAMPLES|47 Videos
  • APPLICATION OF INTEGRALS

    NCERT|Exercise EXERCISE 8.2|7 Videos
  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.4|5 Videos

Similar Questions

Explore conceptually related problems

If x=sqrt(a^(sin-1)t),y=sqrt(a^(cos-1)t) then show that (dy)/(dx)=-(y)/(x)

If x=sqrt(a^(sin^(-1))t),y=sqrt(a^(cos-1)t)a>0 and -1

If x=a^(sin^(-1))t,y=a^(cos^(-1))t, show that (dy)/(dx)=-(y)/(x)

If x=a^(sqrt(sin-1)t) and y=a^(sqrt(cos-1)t), then show that (dy)/(dx)=-(y)/(x)

For t in (0,1), let x= sqrt( 2 ^(sin^(-1)(t))) and y=sqrt(2 ^(cos-1)t), then 1+ ((dy)/(dx))^(2) equals :

x=sqrt(sin 2t),y=sqrt(cos 2 t)

If x=a(t-(1)/(t)),y=a(t+(1)/(t)),"show that "(dy)/(dx)=(x)/(y)

If quad sqrt(a^(sin^(-1))t),y=sqrt(a^(cos-1)t),a>0 and |t|<1 then prove that (d^(2)y)/(dx^(2))=(2y)/(x^(2))

If x=sqrt(2^(cosec^(-1_t))) and y=sqrt(2^(sec^(-1_t))) (|t|ge1) then (dy)/(dx) is equal to.