Home
Class 14
MATHS
Find the value of 1/(2xx3)+1/(3xx4)+1...

Find the value of `1/(2xx3)+1/(3xx4)+1/(4xx5)+1/(5xx6)+\ ddot+1/(9xx10)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (1)/(2xx3)+(1)/(3xx4)+(1)/(4xx5)+(1)/(5xx6)+backslash+(1)/(9xx10)

If A= 1/(1xx2)+1/(1xx4)+1/(2xx3)+1/(4xx7)+ 1/(3xx4)+1/(7xx10) ...... upto 20 terms, then what is the value of A? यदि 1/(1xx2)+1/(1xx4)+1/(2xx3)+1/(4xx7)+ 1/(3xx4)+1/(7xx10).....20 पदों तक हो, तो A का मान क्या है?

What is the value of (1xx 2 +2xx 3-3xx 4 +4xx 5 -5 xx 6 +6 xx 7) ?

Find the value of [((1)/(2))^(2)]^(3)xx((1)/(3))^(-4)xx3^(-2)xx(1)/(6)

Observe the following pattern (1xx2)+(2xx3)=(2xx3xx4)/3, (1xx2)+(2xx3)+(3xx4)=(3xx4xx5)/3, (1xx2)+(2xx3)+(3xx4)+(4xx5)=(4xx5xx6)/3 and find the value of \ (1xx2)+(2xx3)+(3xx4)+(4xx5)+(5xx6)

Evaluate int_(0)^(1) xlog(1+x)dx and hence show that, (1)/(1xx3)-(1)/(2xx4)+(1)/(3xx5)-(1)/(4xx6)+..=(1)/(4)

The simplest value of (1)/(1xx2)+(1)/(2xx3)+(1)/(3xx4)+backslash+(1)/(9xx10) is (1)/(10) (b) (9)/(10) (c) 1 (d) 10