Home
Class 11
MATHS
The value of L = lim(x->0) (1/x)^sin x...

The value of L = `lim_(x->0) (1/x)^sin x`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xto0) ((1-cos2x)sin5x)/(x^(2)sin3x) is

The value of lim_(xrarr0) (x^2sin((1)/(x)))/(sinx) , is

The value of lim_(xrarr0) (x^2sin((1)/(x)))/(sinx) , is

The value of lim_(x rarr0)[(x)/(sin x)] is

The value of lim_(x to 0) ("sinx"/x)^("sin x"/"x-sinx") is

The value of lim_(x rarr0)|x|^(sin x) equals

The value of lim_(xrarr0) {1^((1)/(sin^(2)x)+)2^((1)/(sin^(2)x))+3^((1)/(sin^(2)x))+.....+n^((1)/sin^(2)x)}^(sin^2x) , is

The value of lim_(x rarr0)((sin x)^((1)/(x))+((1)/(x))^(sin x)) equals