Home
Class 12
MATHS
If xi > 0 for 1 <= i <= n and x1+x2+...x...

If `x_i > 0` for `1 <= i <= n and x_1+x_2+...x_n=pi` then the greatest value of the sum `sinx_1+sinx_2+....+sinx_n` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If x_i gt 0 for 1leilen and x_1+x_2+x_3+…+x_n=pi then the greatest value of the sum sinx_1+sinx_2+sinx_3+…+sin_n=… (A) n (B) pi (C) nsin\ pi/n (D) none of these

If X is a random variable with probability distribution as given below: X=x_i :\ 0 \ \ 1 \ \ 2 \ \ 3 P(X=x_i): k \ \ 3k \ \ 3k \ \ k The value of k and its variance are (A) 1/8, 22/27 (B) 1/8, 23/27 (C) 1/8, 24/27 (D) 1/8,3/4

If x_i>0 i=1,2,3,...50 x_1+x_2...+x_50=50 then the minimum value of 1/(x_1) +1/(x_2) +...+1/(x_50) equals

Write the values of a for which the following distribution of probabilities becomes a probability distribution: X=x_i :\ -2 \ \ -1 \ \ 0 \ \ 1 P(X=x_i):(1-a)/4 \ \ (1+2a)/4 \ \ (1-2a)/4 \ \ (1+a)/4 \ \

Three sides of a triangle have the equation L_i = y - m_i x = 0 , I = 1, 2, 3. Then L_1L_2 + lambdaL_2L_3 +_ muL_3L_1 = 0 (where lambda ne 0, mu ne 0 ). Is the equation of the circumcircle of the triangle if

A random variable has the following probability distribution: X=x_i : 0 1 2 3 4 5 6 7 P(X=x_i):0 2p 2 p 3p p^2 2p^2 7p^2 2p The value of p is a. 1/10 b. -1 c. -1/10 d. 1/5

A random variable has the following probability distribution: X=x_i :\ \ 0 \ \ 1 \ \ 2 \ \ 3 \ \ 4 \ \ 5 \ \ 6 \ \ 7 P(X=x_i):0 \ \ 2p \ \ 2 p\ \ 3p\ \ p^2\ \ 2p^2 \ \ 7p^2 \ \ 2p The value of p is a. 1/10 b. -1 c. -1/10 d. 1/5

If X is a random variable with probability distribution as given below: X=x_i : 0 1 2 3 P(X=x_i): k 3k 3k k The value of k and its variance are (A) 1/8, 22/27 (B) 1/8, 23/27 (C) 1/8, 24/27 (D) 1/8,3/4

Find the mean and standard deviation of the following probability distribution: x_i :0 \ \ 1 \ \ 2 \ \ 3 \ \ 4 \ \ 5 p_i :1/6 \ \ 5/(18) \ \ 2/9 \ \ 1/6 \ \ 1/9 \ \ 1/(18)