Home
Class 12
MATHS
If a=b^2=c^3=d^4 then the value of loga...

If `a=b^2=c^3=d^4` then the value of `log_a(abcd)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If a=b^(2)=c^(3)=d^(4) then the value of log_(4)(abcd) is

If a=b^(2)=c^(3)=d^(4), then the value of log_(a)(abcd) would be a.(log_(a)1+(log)_(a)2+(log)_(a)3+(log)_(a)4b(log)_(a)24c.1+(1)/(2)+(1)/(3)+(1)/(4)d1+(1)/(2!)+(1)/(3!)+(1)/(4!)

Let a , b , c , d be positive integers such that (log)_a b=3/2a n d(log)_c d=5/4dot If (a-c)=9, then find the value of (b-d)dot

Let a , b , c , d be positive integers such that (log)_a b=3/2a n d(log)_c d=5/4dot If (a-c)=9, then find the value of (b-d)dot

Let a , b , c , d be positive integers such that (log)_a b=3/2a n d(log)_c d=5/4dot If (a-c)=9, then find the value of (b-d)dot

If a,b,c,d are four positive real numbers such that abcd=1 then least value of (a+4)(b+4)(c+4)(d+4) is

If the root of the equation log_(2)(x)-log_(2)(sqrt(x)-1)=2 is alpha, then the value of alpha^(log_(4)3) is (a) 1 (b) 2 (c) 3 (d) 4