Home
Class 10
MATHS
The value of f(x , y)=((4sqrt(x^3y)-4sq...

The value of `f(x , y)=((4sqrt(x^3y)-4sqrt(x^3))/(sqrt(y)-sqrt(x))+(1+sqrt(x y))/(4sqrt(xy)))^(- 2)(1+2sqrt(y/x)+y/x)^(1/2)` when `x=9,y=0.04`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of f(x,y)=((x^(3)y)^((1)/(4))-(y^(3)x)^((1)/(4)))/(sqrt(y)-sqrt(x))+(1+sqrt(xy))/((xy)^((1)/(4)))xx((1+2sqrt((y)/(x))+(y)/(x))^(4) when x=9 and y=0.04

(2)/(sqrt(x))+(3)/(sqrt(y))=2 and (4)/(sqrt(x))-(9)/(sqrt(y))=-1

sqrt (2x) -sqrt (3y) = 0sqrt (3x) -sqrt (3y) = 0

Solve: (2)/(sqrt(x))-(3)/(sqrt(y))=2 and (4)/(sqrt(x))-(9)/(sqrt(y))=-1

Solve (2)/(sqrt(x))+(3)/(sqrt(y))=2 ;(4)/(sqrt(x))+(3)/(sqrt(y))=2

{:((2)/(sqrt(x))+ (3)/(sqrt(y)) = 2),((4)/(sqrt(x))-(9)/(sqrt(y)) = -1):}

If x>y prove that sqrt(y+sqrt(2xy-x^2))+sqrt(y-sqrt(2xy-x^2)) = sqrt(2x) .

if x=sqrt(3)+(1)/(sqrt(3)) and y=sqrt(3)-(1)/(sqrt(3)) then x^(2)-y^(2) is

Solve for x and y : 2/sqrt(x) + 3/sqrt(y) = 2 4/sqrt(x) + 9/sqrt(y) = -1

If sqrt(3)x-sqrt(2y)=sqrt(3);sqrt(5)x+sqrt(3)y=sqrt(2) then x and y are