Home
Class 12
MATHS
Prove the identities: |[b^2+c^2,ab, ac]...

Prove the identities: `|[b^2+c^2,ab, ac],[ba,c^2+a^2,bc],[ca, cb ,a^2+b^2]|=4a^2b^2c^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the identity: |[b^2+c^2,ab, ac],[ba,c^2+a^2,bc],[ca, cb ,a^2+b^2]|=4a^2b^2c^2

Show that |[b^2+c^2,ab,ac],[ba,c^2+a^2,bc],[ca,cb,a^2+b^2]|=4a^2b^2c^2

Show that |[b^2+c^2,ab,ac],[ba,c^2+a^2,bc],[ca,cb,a^2+b^2]|=4a^2b^2c^2

Show that |[b^2+c^2,ab,ac],[ba,c^2+a^2,bc],[ca,cb,a^2+b^2]|=4a^2b^2c^2

Prove that the following. [[b^2+c^2,ab,ac],[ab,c^2+a^2,bc],[ca,cb,a^2+b^2]]=4a^2b^2c^2

abs([-a^2,ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]) = 4a^2.b^2.c^2

Prove that: |[-a^2, ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]|=4a^2b^2c^2

Using properties of determinants, prove the following: |[a^2 + 1,ab, ac], [ab,b^2 + 1,b c],[ca, cb, c^2+1]|=1+a^2+b^2+c^2

Evaluate |[0,c,b] , [c,0,a] , [b,a,0]| hence show that |[0,c,b] , [c,0,a] , [b,a,0]|^2= |[b^2+c^2,ab,ac] , [ab,c^2+a^2,bc] , [ca,bc,a^2+b^2]|=4a^2b^2c^2

Prove the identities: |{:(b^(2)+c^(2),,ab,,ac),(ab,,c^(2)+a^(2),,bc),(ca,,bc,,a^(2)+b^(2)):}|=4a^2b^2c^2