Home
Class 12
MATHS
If [(1,0,0),(1,0,1),(0,1,0)] then A) A^3...

If `[(1,0,0),(1,0,1),(0,1,0)]` then A) `A^3-A^2=A-I` (B) `Det (A^(2010)-1)=0` (C) `A^50=[(1,0,0),(25,1,0),(25,0,1)]` (D) `A^50=[(1,1,0),(25,1,0),(25,0,1)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[{:(1,0,0),(1,0,1),(0,1,0):}] , then which is true (a) A^(3)-A^(2)=A-I (b) det. (A^(100)-I)=0 (c) A^(200)=[(1,0,0),(100,1,0),(100,0,1)] (d) A^(100)=[(1,1,0),(50,1,0),(50,0,1)]

If A=[{:(1,0,0),(1,0,1),(0,1,0):}] , then which is true a. A^(3)-A^(2)=A-I b. det. (A^(100)-I)=0 c. A^(200)=[(1,0,0),(100,1,0),(100,0,1)] d. A^(100)=[(1,1,0),(50,1,0),(50,0,1)]

(i) {:[( 1,0,0),( 0,1,0),( 0,0,1) ]:}" "(ii) {:[( 1,0,4),(3,5,-1),( 0,1,2) ]:}

The inverse of the matrix [(0,0,1),(0,1,0),(1,0,0)] is (A) [(0,0,1),(0,1,0),(1,0,0)] (B) [(0,0,-1),(0,-1,0),(-1,0,0)] (C) [(1,0,0),(0,1,0),(0,0,1)] (D) [(1/2,0,0),(0,1/2,0),(0,0,1/2)]

The inverse of the matrix [(0,0,1),(0,1,0),(1,0,0)] is (A) [(0,0,1),(0,1,0),(1,0,0)] (B) [(0,0,-1),(0,-1,0),(-1,0,0)] (C) [(1,0,0),(0,1,0),(0,0,1)] (D) [(1/2,0,0),(0,1/2,0),(0,0,1/2)]

If A=[(1,-1,0),(1,0,0),(0,0,-1)] , then A^(-1) is...a) A^T b) A^2 c) A d) I

If A=[(a, 0,0),(0,b,0),(0,0,c)] and a,b,c are non zero real numbers, then A^-1 is (A) 1/(abc) [(1,0,0),(0,1,0),(0,0,1)] (B) 1/(abc) [(a,0,0),(0,b,0),(0,c,0)] (C) 1/(abc) [(a^-1,0,0),(0,b^-1,0),(0,c^-1,1)] (D) [(a^-1,0,0),(0,b^-1,0),(0,0,c^-1)]

If A=[(alpha, 0,0),(0,b,0),(0,0,c)] and a,b,c are non zero real numbers, then A^-1 is (A) 1/(abc) [(1,0,0),(0,1,0),(0,0,1)] (B) 1/(abc) [(a,0,0),(0,b,0),(0,c,0)] (C) 1/(abc) [(a^-1,0,0),(0,b^-1,0),(0,c^-1,1)] (D) [(a^-1,0,0),(0,b^-1,0),(0,c^-1,1)]

The inverse of the matrix [(1,0,0),(a,1,0),(b,c,1)] is (A) [(1,0,0),(-a,1,0),(b,c,1)] (B) [(1,0,0),(-a,1,0),(ac,b,1)] (C) [(1,-a,ac-b),(-0,1,-c),(0,0,1)] (D) [(1,0,0),(-a,1,0),(ac-b,-c,1)]

The inverse of the matrix [(1,0,0),(a,1,0),(b,c,1)] is (A) [(1,0,0),(-a,1,0),(b,c,1)] (B) [(1,0,0),(-a,1,0),(ac,b,1)] (C) [(1,-a,ac-b),(-0,1,-c),(0,0,1)] (D) [(1,0,0),(-a,1,0),(ac-b,-c,1)]