Home
Class 12
MATHS
If 0 le theta lepi and 8 1^(sin^2theta)...

If `0 le theta lepi and 8 1^(sin^2theta)+8 1^(cos^2theta)=30` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If 0 le theta le pr, cos 6theta + cos 4theta + cos 2theta + 1 =0 then the ascending order of the values of theta is

Find the value of theta (0^@ le theta le 90^@) satisfying : 2 sin^2 theta= 3 cos theta .

If sin theta-cos theta=0 , then the value of (sin^(8)theta+cos^(8)theta) is

Solve (0^(@) le theta le 360^(@)) : (v) 4 sin theta cos theta = 1 - 2 sin theta + 2cos theta .

Prove that : sin^8 theta- cos^8 theta= (sin^2 theta- cos^2 theta)(1-2 sin^2 theta cos^2 theta) .

If sin theta = (1)/(2)cos theta , and 0 le theta le (pi)/(2) , the value of (1)/(2)sin theta is

Prove that 8 sin^4(theta/2)-8sin^2(theta/2)+1=cos2theta

If theta be any real, prove that : cos4 theta=1-8 sin^2 theta cos^2 theta =1-8 cos^2 theta +8 cos^4 theta .