Home
Class 12
MATHS
The product of matrices A=[[cos^2theta,c...

The product of matrices `A=[[cos^2theta,costheta],[sinthetacostheta,sinthetasin^2theta]]` and `B=[[cos^2phicosphi,sinphicosphi],[sinphi,sin^2phi]]` is a null matrix if `theta-phi=` (A) `2npi,n in Z` (B) `(npi)/2, n in Z` (C) `(2n+1)pi/2, n in Z` (D) `npi, n in Z`

Promotional Banner

Similar Questions

Explore conceptually related problems

The product of matrices A=[[cos^2theta,sinthetacostheta],[sinthetacostheta,sin^2theta]] and B=[[cos^2phi,sinphicosphi],[sinphicosphi,sin^2phi]] is a null matrix if theta-phi= (A) 2npi,n in Z (B) (npi)/2, n in Z (C) (2n+1)pi/2, n in Z (D) npi, n in Z

The product of matrices A=[[cos^2theta,sinthetacostheta],[sinthetacostheta,sin^2theta]] and B=[[cos^2phi,sinphicosphi],[sinphicosphi,sin^2phi]] is a null matrix if theta-phi= (A) 2npi,n in Z (B) (npi)/2, n in Z (C) (2n+1)pi/2, n in Z (D) npi, n in Z

The product of matrices A = [(cos^(2) theta, cos theta sin theta),(cos theta sin theta , sin^(2) theta)] and sin B = [(cos^(2)phi, cos phi sin phi),(cos phi sin phi, sin^(2) phi)] is a null matrix if theta - phi =

Let tanx-tan^2x >0 and |2sinx| (a) x > npi,n in Z (b) x > npi-pi/6,n in Z (c) x (d) x < npi+pi/6, n in Z

Let tanx-tan^2x >0 and |2s inx| npi,n in Z (b) x > npi-pi/6,n in Z x

Let tanx-tan^2x >0 and |2sinx| npi,n in Z (b) x > npi-pi/6,n in Z x

The function f(x)=tanx is discontinuous on the set {npi; n in Z} (b) {2npin in Z} {(2n+1)pi/2: n in Z} (d) {(npi)/2: n in Z}

y=sin^(2)theta+cos ec^(2)theta,theta!=n pi n in z then

Let tanx-tan^2x >0 and |2sinx| x > npi,n in Z (b) x > npi-pi/6,n in Z x