Home
Class 11
MATHS
In the quadratic equation A(sqrt3-sqrt2)...

In the quadratic equation `A(sqrt3-sqrt2)x^2+B/(sqrt3+sqrt2)x+C=0` with `alpha,beta` as its roots.If `A=(49+20sqrt6)^(1/4) ; B=`sum of the infinit `G.P.` as `8sqrt3+8sqrt6/sqrt3+16/sqrt3+........oo and |alpha-beta|=(6sqrt6)^k` whrere `k=log_6 sqrt10-2log_6 sqrt5+log_6 sqrt(log_6 18+log_6 72)` then find the value of C.

Promotional Banner

Similar Questions

Explore conceptually related problems

In the equadratic equation A(sqrt3-sqrt2)x^2+B/(sqrt3+sqrt2) x+C=0 with alpha, beta as its roots. If A=(49+20sqrt6)^(1/4); B=sum of the infinite G.P as 8sqrt3+(8sqrt6)/sqrt3+(16)/sqrt3+.....oo and |alpha-beta|=(6sqrt6)^k where k=log_6 10-2 log_6 sqrt5+log_6 sqrt((log_6 18 + log_6 72)), then find the value of C.

(sqrt 3 + sqrt 2)^6 + (sqrt 3 - sqrt 2)^6 =

Evaluate (sqrt3 + sqrt2 )^6 - ( sqrt3 - sqrt2)^6 .

(3sqrt2+sqrt3-sqrt6)/(2sqrt3-3sqrt2+sqrt6)=

Find the value of (log sqrt(27) + log sqrt(8) - log sqrt(125))/(log 6 - log 5)

(3-sqrt(6))/(3+2sqrt(6))=a sqrt(6)-b

Evaluate log_2sqrt6+log_2 sqrt(2/3)