Home
Class 12
MATHS
[" Let "f(x)=x-1" then "],[qquad [f(x')-...

[" Let "f(x)=x-1" then "],[qquad [f(x')-{f(x)}^(2)],[" or "f(x+y)=f(x)+f(y),f(x|)=|f(x)|],[" or "," None "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=|x-1|* Then (a) f(x^(2))=(f(x))^(2) (b) f(x+y)=f(x)+f(y)(c)f(|x|)-|f(x)| (d) none of these

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)-|f(x)| (d) none of these

If f(x)=(a^(x)+a^(-x))/(2) and f(x+y)+f(x-y)=kf(x)f(y) then k=

If f(x) = (x-1)/(x+1) , then prove that (f(x)-f(y))/(1+f(x)f(y))=(x-y)/(1+xy) .

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=

Let f(x) be a function such that f(x)*f(y)=f(x+y),f(0)=1,f(1)=4. If 2g(x)=f(x)*(1-g(x))