Home
Class 12
MATHS
The greatest value of the function f(x)=...

The greatest value of the function `f(x)=(sin2x)/(sin(x+pi/4))` on the interval `(0,pi/2)i s` `1/(sqrt(2))` (b) `sqrt(2)` (c) 1 (d) `-sqrt(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The greatest value of the function f(x)=(sin2x)/(sin(x+(pi)/(4))) on the interval [0,(pi)/(2)] is

The greatest value of the function f(x)=(sin2x)/(sin(x+(pi)/(4))) on the interval (0,(pi)/(2)) is (1)/(sqrt(2))(b)sqrt(2)(c)1(d)-sqrt(2)

The greatest value of the fucntion f(x)=sin^(-1)x^2 in interval [-1//sqrt(2),1//sqrt(2)] is

The area enclosed by the curve y=sin x+cos x and y=|cos x-sin x| over the interval [0,(pi)/(2)] is 4(sqrt(2)-2) (b) 2sqrt(2)(sqrt(2)-1)2(sqrt(2)+1)(d)2sqrt(2)(sqrt(2)+1)

If 4\ cos^(-1)x+sin^(-1)x=pi , then the value of x is (a) 3/2 (b) 1/(sqrt(2)) (c) (sqrt(3))/2 (d) 2/(sqrt(3))

The value of lim_(x->pi/4) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

The value of lim_(x->pi/4) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

The value of lim_(x->pi/4) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

The value of lim_(x->pi/4) (sqrt(1-sqrt(sin2x)))/(pi-4x) is