Home
Class 12
MATHS
Let f(x) =1+x. sinx.[cosx].0 < x <= pi/2...

Let `f(x) =1+x. sinx.[cosx].0 < x <= pi/2.` Then, ([*] denotes the integer function ).

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = sinx + cosx, g(x) =x^(2)-1 . Then g(f(x)) is invertible for x in

Let f(x) = |sinx| + |cosx|, g(x) = cos(cosx) + cos(sinx) ,h(x)={-x/2}+sinpix , where { } representsfractional function, then the period of

Let f(x) = {:{((sinx)/x + cosx, when x ne 0),(2, when x = 0):} show that f (x) is continouous at x = 0.

Let f(x)={((a(1-sinx)+b.cosx+5)/x^2,xlt0),(3, x=0),((1+((cx+dx^3)/x^2))^(1//x),xgt0):} find a and b

Let F(x)= [cosx -sinx 0 sinx cosx 0 0 0 1] . Show that F(x)\ F(y)=F(x+y)

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)|, the value of int_0^(pi//2){f(x) + f'(x)} dx, is