Home
Class 12
MATHS
h(x)=3f((x^2)/3)+f(3-x^2)AAx in (-3, 4) ...

`h(x)=3f((x^2)/3)+f(3-x^2)AAx in (-3, 4)` where `f''(x)> 0 AA x in (-3,4),` then h(x ) is

Promotional Banner

Similar Questions

Explore conceptually related problems

If g(x) =2f(2x^3-3x^2)+f(6x^2-4x^3-3) AA x in R and f''(x) gt 0 AA x in R then g(x) is increasing in the interval

If g(x)=2f(2x^(3)-3x^(2))+f(6x^(2)-4x^(3)-3)AA x in R and f'(x)>0AA x in R then g(x) is increasing in the interval

If g(x) =2f(2x^3-3x^2)+f(6x^2-4x^3-3) AA x in R and f''(x) gt 0 AA x in R then g(x) is increasing in the interval

If f@g=g@f, where f(x)=2x+5 and g(x)=3x+h, then: h=

If f(3x+2)+f(3x+29)=0 AAx in R , then the period of f(x) is

If f(3x+2)+f(3x+29)=0 AA x in R , then the period of f(x) is

If f(x) = x^(3) + x^(2) * f' (1)+ xf''(2) + f''(2) + f'''(3) , AA x in R Where , f(x) is a polynimial of degree 3 , then

Let f(x+p)=1+{2-3f(x)+3(f(x))^2-(f(x)^3}^(1//3), for all x in R where p>0 , then prove f(x) is periodic.