Home
Class 11
MATHS
tan15^@=2-sqrt(3)...

`tan15^@=2-sqrt(3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The angles of elevation of the top of a tower form two points A and B lying on the horizontal through the foot of the lower are respectively 15^@ and 30^@ . If A and B are on the same side of the tower and AB = 96 metre, then the height of the tower is : (tan15^@ = 2-sqrt3)

Suppose that neither A-15^(@) nor A-75^(@) is an integral multiple of 180^(@) . Then prove that cot(15^(@)-A)+tan(15^(@)+A)=(4cos2A)/(1-2sin2A) and deduce that tan 15^@)=2-sqrt(3) .

If tan 15^@=2-sqrt3 , then the value of tan15^@ cot 75^@+tan75^@ cot 15^@ is

If tan15^@=2-sqrt3 , then the value of cot^2""75^@ (a) 7+sqrt3 (b) 7-2sqrt3 (c) 7-4sqrt3 (d) 7+4sqrt3

Show that cot(A+15^(@))-tan(A-15^(@))=(4cos2A)/(1+2sin2A) deduce that cot15^(@)=2+sqrt(3)

Show that tan 15^@ = 2 - sqrt3

Prove that Cot105^(@)=-(2-sqrt(3))=-Tan15^(@)

Prove that Cot15^(@)=2+sqrt(3)=Tan75^(@)

tan x=2-sqrt(3)

If tan 15^(@) = 2 - sqrt(3) , then show that 2 tan 1095^(@) + cot 975^(@) + tan (-195^@) = 4 - 2sqrt(3) .