Home
Class 11
MATHS
If a,b,c are distinct, show that [[1,1,...

If a,b,c are distinct, show that `[[1,1,1],[a,b,c],[a^3,b^3,c^3]] = (b-c) * (c-a)*(a-b)(a+b+c)`

Text Solution

Verified by Experts

`L.H.S. = |[1,1,1],[a,b,c],[a^3,b^3,c^3]|`
Applying `C_1->C_1- C_2 and C_2->C_2-C_3`
`=|[0,0,1],[a-b,b-c,c],[a^3-b^3,b^3-c^3,c^3]|`
`=|[0,0,1],[a-b,b-c,c],[(a-b)(a^2+ab+b^2),(b-c)(b^2+bc+c^2),c^3]|`
`=(a-b)(b-c)|[0,0,1],[1,1,c],[a^2+ab+b^2,b^2+bc+c^2,c^3]|`
`=(a-b)(b-c)[b^2+bc+c^2 - a^2- ab-b^2]`
`=(a-b)(b-c)[bc - ab +c^2 - a^2]`
`=(a-b)(b-c)[b(c-a)+(c+a)(c-a)]`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: [[1,1,1],[a,b,c],[a^3,b^3,c^3]] =(b-c)(c-a)(a-b)(a+b+c)

By using properties of determinants, show that : |[1,1,1],[a,b,c],[a^3,b^3,c^3]| = (a-b)(b-c)(c-a)(a+b+c)

1,1,1a,b,ca^(3),b^(3),c^(3)]|=(a-b)(b-c)(c-a)(a+b+c)

Prove that |(1,1,1),(a,b,c),(a^3,b^3,c^3)| = (a - b)(b-c)(c-a)(a+b+c) .

|{:(1,1,1),(a^2,b^2,c^2),(a^3,b^3,c^3):}|=(b-c)(c-a)(a-b)(bc+ca+ab)

Prove that |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))|=(a-b)(b-c)(c-a)(a+b+c)

|(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))|=

Prove that |[1,a,a^3],[1,b,b^3],[1,c,c^3]|=(a-b)(b-c)(c-a)(a+b+c)

Prove that |[1,a,a^3],[1,b,b^3],[1,c,c^3]|=(a-b)(b-c)(c-a)(a+b+c)