Home
Class 12
MATHS
xy=e^(x-y)...

xy=e^(x-y)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solution of x dy/dx+y=xe^x is (A) xy=e^x(x+1)+C (B) xy=e^x(x-1)+C (C) xy=e^x(1-x)+C (D) xy=e^y(y-1)+C

Find (dy)/(dx), when x and y are connected by the following relations ax^(2)+2hxy+by^(2)+2gx+2fy+c=0xy+xe^(-y)+y*e^(x)=x^(2)

If (dy)/(dx)=(xy+y)/(xy+x), then the solution of the differential equation is (A) y=xe^(x)+c(B)y=e^(x)+c(C)y=Axe^(x-y)(D)y=x+A

Let f : R^(+) rarr R satisfies the functional equation f(xy) = e^(xy - x - y) {e^(y) f(x) + e^(x) f(y)}, AA x, y in R^(+) . If f'(1) = e, determine f(x).

Let f : R^(+) rarr R satisfies the functional equation f(xy) = e^(xy - x - y) {e^(y) f(x) + e^(x) f(y)}, AA x, y in R^(+) . If f'(1) = e, determine f(x).

Find dy/dx e^(xy) + y sin x = 1

(b) Solve: (x.e^(xy)+2y)dy+y.e^(xy)dx=0