Home
Class 12
MATHS
cot^(-1)(1)/(2)-(1)/(2)cot^(-1)(4)/(3)=(...

cot^(-1)(1)/(2)-(1)/(2)cot^(-1)(4)/(3)=(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: cot^(-1)(1/2)-1/2cot^(-1)(4/3)=pi/4

The value of 2(cot^(-1))(1)/(2)-(cot^(-1))(4)/(3) is

Value of 2 cot^(-1)""(1)/(2)-cot^(-1)""(4)/(3) is-

The value of s in((1)/(2)cot^(-1)(-(3)/(4)))+cos((1)/(2)cot^(-1)(-(3)/(4))) is/are equal to- a.1b.(3sqrt(2))/(10)c .sqrt(2)sin((1)/(2)cot^(-1)(-(3)/(4))+cot^(-1)(1))d2sin(pi-tan^(-o1)(1)-(1)/(2)(tan^(-1)(1))/(3))'

The sum to infinite terms of the series cot^(-1)(2^(2)+(1)/(2))+cot^(-1)(2^(3)+(1)/(2^(2)))+cot^(-1)(2^(4)+(1)/(2^(3)))+

Prove that "Tan"^(-1)2+Tan^(-1)3=Cot^(-1)(1/2)+Cot^(-1)(1/3)=(3pi)/4

sin ^(-1) "" (1)/(sqrt(5))+cot ^(-1) 3= (pi)/(4)

The sum of infinite terms of the series cot^(-1)(2^(2)+1/2)+cot^(-1)(2^(3)+1/2^(2))+cot^(-1)(2^(4)+1/2^(3))+…=cot^(-1)k then k =

cot^(2)x-(1)/(2)cot^(4)x+(1)/(3)cot^(6)x -(1)/(4)cot^(8)x+…oo=