Home
Class 12
MATHS
2e^(x)y^(3)=(dy)/(dx);y(0)=(1)/(2)...

2e^(x)y^(3)=(dy)/(dx);y(0)=(1)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following differential equations (i) (1+y^(2))dx = (tan^(-1)y - x)dy (ii) (x+2y^(3))(dy)/(dx) = y (x-(1)/(y))(dy)/(dx) + y^(2) = 0 (iv) (dy)/(dx)(x^(2)y^(3)+xy) = 1

Solve the following initial value problem: (dy)/(dx)=2e^(x)y^(3),y(0)=(1)/(2)

Find the order and degree of the following D.E's (i) (d^(2)y)/(dx^(2)) + 2((dy)/(dx))^(2) + 5y = 0 (ii) 2(d^(2)y)/(dx^(2)) = (5+(dy)/(dx))^((5)/(3)) (iii) 1+((d^(2)y)/(dx^(2)))^(2) = [2+((dy)/(dx))^(2)]^((3//2)) (iv) [(d^(2)y)/(dx^(2))+((dy)/(dx))^(3)]^((6/(5)) = 6y (v) [((dy)/(dx))^(2) + (d^(2)y)/(dx^(2))]^((7)/(3)) = (d^(3y))/(dx^(3)) (vi) [((dy)/(dx))^((1)/(2)) + ((d^(2)y)/(dx^(2)))^((1)/(2))]^((1)/(4)) = 0 (vii) (d^(2)y)/(dx^(2)) + p^(2)y = 0 (viii) ((d^(3)y)/(dx^(3)))^(2) -3((dy)/(dx))^(2) - e^(x) = 4

(dy)/(dx)=2e^(x)y^(3) , when x=0, y=(1)/(2)

(dy)/(dx) + 3y = e^(-2x)

(dy)/(dx) + 3y = e^(-2x)

(1+3e^((y)/(x)))dy+3e^((y)/(x))(1-(y)/(x))dx=0

find the order and degree of D.E : (1) ((d^(2)y)/(dx^(2) ))^2 + ((dy)/(dx))^(3) = e^(x) (2) sqrt(1 + 1/((dy)/(dx))^(2))= ((d^(2)y)/(dx^(2)))^(3/2) (3) e^((dy)/(dx))+ (dy)/(dx) =x

(1+3e^((y)/(x)))dy+3e^((y)/(x))(1-(y)/(x))dx=0 , given that y=0 and x=1