Home
Class 11
MATHS
" 8.Prove that "cos^(4)A-sin^(4)A+1-2cos...

" 8.Prove that "cos^(4)A-sin^(4)A+1-2cos^(2)A=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : cos^(4) A - sin^(4) A = 2 cos^(2) A - 1

Prove that cos^(4)A-sin^(4)A=cos^(2)A-sin^(2)A .

Prove the following cos^(4)A-sin^(4)A+1=2cos^(2)A

If sin A + sin^(2)A + sin^(3)A =1 , then , prove that cos^(6) A - 4 cos^(4) A + 8 cos^(2) A =4 .

Prove that (cos^(4)theta-sin^(4)theta)/(cos^(2)theta-sin^(2)theta)=1

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1, Prove that: sin^(4)A+sin^(4)B=2sin^(2)A sin^(2)B

Prove that sec^(2)A-((sin^(2)A-2sin^(4)A)/(2cos^(4)A-cos^(2)A))=1

Prove that: cos^(6)A-sin^(6)A=cos2A(1-(1)/(4)sin^(2)2A)

If sin x + sin^(2) x + sin^(3) x = 1 , then prove that cos^(6)x - 4 cos^(4) x + 8 cos^(2) x - 4 = 0 .

Prove that sin^(4)A"cosec"^(2)A+cos^(4)Asec^(2)A=1