Home
Class 12
MATHS
If y=e^(tanx)," then "(cos^(2)x)d^(2)/(d...

If `y=e^(tanx)," then "(cos^(2)x)d^(2)/(dx^(2))=`

A

`(1-sin 2x)(dy)/(dx)`

B

`-(1+ sin 2x) (dy)/(dx)`

C

`(1+ sin 2x)(dy)/(dx)`

D

`(sin 2x-1)(dy)/(dx)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

y=x+e^(x), then (d^(2)y)/(dx^(2))=

If y=e^(2x) , then (d^(2)y)/(dx^(2)).(d^(2)x)/(dy^(2)) is equal to

If y=e^tanx then prove that: cos^2x(d^2y)/(dx^2)-(1+sin2x)(dy)/dx=0

If y=sec x-tanx ,show that (cosx)(d^(2)y)/(dx^(2))=y^(2).

If y=e^(x) , then (d^(2)y)/(dx^(2)) = e^(x) .

If y=cos(log x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y is equal to

If x=e^(z) then x^(2)*(d^(2)y)/(dx^(2)) is