Home
Class 12
MATHS
If y=e^(m cos^(-1)x), then (1-x^(2))y(2)...

If `y=e^(m cos^(-1)x)`, then `(1-x^(2))y_(2)-xy_(1)-m^(2)y` is equal to

A

0

B

1

C

`-1`

D

`2m^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \( (1 - x^2)y_{2} - xy_{1} - m^{2}y \) given that \( y = e^{m \cos^{-1}(x)} \). ### Step 1: Find \( y_1 \) (First Derivative) We start with: \[ y = e^{m \cos^{-1}(x)} \] To find the first derivative \( y_1 = \frac{dy}{dx} \), we apply the chain rule: \[ y_1 = \frac{d}{dx} \left( e^{m \cos^{-1}(x)} \right) = e^{m \cos^{-1}(x)} \cdot \frac{d}{dx}(m \cos^{-1}(x)) \] The derivative of \( \cos^{-1}(x) \) is: \[ \frac{d}{dx}(\cos^{-1}(x)) = -\frac{1}{\sqrt{1 - x^2}} \] Thus, \[ y_1 = e^{m \cos^{-1}(x)} \cdot \left(-\frac{m}{\sqrt{1 - x^2}}\right) = -\frac{m e^{m \cos^{-1}(x)}}{\sqrt{1 - x^2}} \] ### Step 2: Find \( y_2 \) (Second Derivative) Next, we find the second derivative \( y_2 = \frac{d^2y}{dx^2} \). We differentiate \( y_1 \): \[ y_2 = \frac{d}{dx}\left(-\frac{m e^{m \cos^{-1}(x)}}{\sqrt{1 - x^2}}\right) \] Using the quotient rule: \[ y_2 = \frac{(-m \cdot \frac{d}{dx}(e^{m \cos^{-1}(x)})) \cdot \sqrt{1 - x^2} - (-m e^{m \cos^{-1}(x)}) \cdot \frac{d}{dx}(\sqrt{1 - x^2})}{(1 - x^2)} \] Calculating \( \frac{d}{dx}(e^{m \cos^{-1}(x)}) \) again gives us: \[ \frac{d}{dx}(e^{m \cos^{-1}(x)}) = -\frac{m e^{m \cos^{-1}(x)}}{\sqrt{1 - x^2}} \] And for \( \frac{d}{dx}(\sqrt{1 - x^2}) \): \[ \frac{d}{dx}(\sqrt{1 - x^2}) = -\frac{x}{\sqrt{1 - x^2}} \] Substituting these into the expression for \( y_2 \): \[ y_2 = \frac{(-m)(-\frac{m e^{m \cos^{-1}(x)}}{\sqrt{1 - x^2}}) \cdot \sqrt{1 - x^2} - (-m e^{m \cos^{-1}(x)}) \cdot \left(-\frac{x}{\sqrt{1 - x^2}}\right)}{(1 - x^2)} \] This simplifies to: \[ y_2 = \frac{m^2 e^{m \cos^{-1}(x)} - mx e^{m \cos^{-1}(x)}}{(1 - x^2)} \] ### Step 3: Substitute into the Expression Now we substitute \( y_1 \) and \( y_2 \) into the expression: \[ (1 - x^2)y_{2} - xy_{1} - m^{2}y \] Substituting \( y_2 \): \[ (1 - x^2) \left(\frac{m^2 e^{m \cos^{-1}(x)} - mx e^{m \cos^{-1}(x)}}{(1 - x^2)}\right) - x\left(-\frac{m e^{m \cos^{-1}(x)}}{\sqrt{1 - x^2}}\right) - m^2 e^{m \cos^{-1}(x)} \] This simplifies to: \[ m^2 e^{m \cos^{-1}(x)} - mx e^{m \cos^{-1}(x)} + \frac{mx e^{m \cos^{-1}(x)}}{\sqrt{1 - x^2}} - m^2 e^{m \cos^{-1}(x)} \] The \( m^2 e^{m \cos^{-1}(x)} \) terms cancel out, leading to: \[ -mx e^{m \cos^{-1}(x)} + \frac{mx e^{m \cos^{-1}(x)}}{\sqrt{1 - x^2}} = 0 \] Thus, the entire expression equals zero: \[ (1 - x^2)y_{2} - xy_{1} - m^{2}y = 0 \] ### Final Answer \[ (1 - x^2)y_{2} - xy_{1} - m^{2}y = 0 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(msin^(-1)x)," then "(1+x^(2))y_(2)-xy_(1)=

If y=cos(msin^(-1)x)," then "(1-x^(2))y_(2)-xy_1=

If y=(sin^(-1)x)^(2)," then "(1-x^(2))y_(2)-xy_(1)=

If y=sin(m sin^(-1)x), then (1-x^(2))y_(2)-xy_(1) is equal to m^(2)y(b)my(c)-m^(2)y(d) none of these

If y=cos(m sin^(-1)x), show that (1-x^(2))y_(2)-xy_(1)+m^(2)y=0

" 1(a) If "y=e^(a sin^(-1)x)" ,show that "(1-x^(2))y_(2)-xy_(1)-a^(2)y=0

If y=(sin^(-1)x)^(2), prove that (1-x^(2))y_(2)-xy_(1)-2=0

If y=x+sqrt(x^(2)-1)," then "(x^(2)-1)y_(2)+xy_(1)=

If y=xe^(-1//x)," then "x^(3)y_(2)-xy_(1)=

If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal to