Home
Class 12
MATHS
If y=tan^(-1)[(logex)/(log (e/x))] + ta...

If `y=tan^(-1)[(logex)/(log (e/x))] + tan^(-1)[(8-logx)/(1+8 logx)]`, then `(d^(2)y)/(dx^(2))` is

A

1

B

`1/2`

C

`-1`

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(logx)

If y=tan^(-1)((log((e)/(x^(2))))/(log(ex^(2))))+tan^(-1)((3+2log x)/(1-6log x)) then (d^(2)y)/(dx^(2)) is (a) 2(b)1(c)0(d)-1

If y=tan^(-1)[(1-2logx)/(1+2logx)]+tan^(-1)[(3+2logx)/(1-6logx)]," then "((dy)/(dx))_(x=3)+((dy)/(dx))_(x=-3)=

f(x)=tan^(-1){(log((e)/(x^(2))))/(log(ex^(2)))}+tan^(-1)((3+2log x)/(1-6log x)) then find (d^(n)y)/(dx^(n))

If y=tan ^(-1) ((log (ex))/( log ((e)/( x)))) ,then (dy)/(dx) =

If y=e^(1+logx)," then: "(dy)/(dx)

If y=tan^(-1)[(log(e//x^(3)))/(log(ex^(3)))]+tan^(-1)[(log(e^(4)x^(3)))/(log(e//x^(12)))]," then "(d^(2)y)/(dx^(2))=

If y=x^((logx)^(log(logx))) , then (dy)/(dx) is