Home
Class 12
MATHS
If x= sin t and y= sin^(3)t, then (d^(2)...

If `x= sin t` and `y= sin^(3)t`, then `(d^(2)y)/(dx^(2))` at `t=pi/2` is

A

2

B

4

C

6

D

8

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=t^(3)+t+5 and y=sin t then (d^(2)y)/(dx^(2))

If y = sin t and x = 2 t then (d^(2)y)/(dx^(2)) =

If x = e ^(t ) sin t, y = e ^(t) cos t, then (d ^(2) y )/(dx ^(2)) at t = pi is

If x=cos(2t)and y=sin^(2)t , then what is (d^(2)y)/(dx^(2)) equal to?

If x=e^(t)sin t,y=e^(t)cos t then (d^(2)y)/(dx^(2)) at x=pi is

x=t cos t,y=t+sin t. Then (d^(2)x)/(dy^(2)) at t=(pi)/(2) is

If x=sin^(-1)t and y=log(1-t^(2)), then ((d^(2)y)/(dx^(2)))_(t=(1)/(2)) is