Home
Class 12
MATHS
If y=e^(x).e^(2x).e^(3x)…..e^(nx), then ...

If `y=e^(x).e^(2x).e^(3x)…..e^(nx)`, then `(dy)/(dx)`=

A

`(n(n+1))/2`

B

`(n(n+1)y)/2`

C

`(n(n-1)y)/2`

D

ny

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we start with the expression for \( y \): \[ y = e^x \cdot e^{2x} \cdot e^{3x} \cdots e^{nx} \] ### Step 1: Simplify the Expression for \( y \) Using the property of exponents, we can combine the terms: \[ y = e^{(1 + 2 + 3 + \ldots + n)x} \] The sum of the first \( n \) natural numbers is given by the formula: \[ 1 + 2 + 3 + \ldots + n = \frac{n(n + 1)}{2} \] Thus, we can rewrite \( y \) as: \[ y = e^{\frac{n(n + 1)}{2} x} \] ### Step 2: Differentiate \( y \) with Respect to \( x \) Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx} \left( e^{\frac{n(n + 1)}{2} x} \right) \] Using the chain rule, we have: \[ \frac{dy}{dx} = e^{\frac{n(n + 1)}{2} x} \cdot \frac{d}{dx} \left( \frac{n(n + 1)}{2} x \right) \] The derivative of \( \frac{n(n + 1)}{2} x \) with respect to \( x \) is simply \( \frac{n(n + 1)}{2} \). Therefore: \[ \frac{dy}{dx} = e^{\frac{n(n + 1)}{2} x} \cdot \frac{n(n + 1)}{2} \] ### Step 3: Substitute Back for \( y \) Since we know that \( y = e^{\frac{n(n + 1)}{2} x} \), we can substitute this back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = y \cdot \frac{n(n + 1)}{2} \] ### Final Result Thus, the final expression for \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = y \cdot \frac{n(n + 1)}{2} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(e^(3)-e^(2x))/(e^(3)+e^(2x))," then: "(dy)/(dx)=

If y=(e^(x)-e^(-x))/(e^(x)+e^(-x)) ,then (dy)/(dx) =

If e^(x)+e^(y)=x+y, then (dy)/(dx)=

if y^(x)=e^(y-x) then (dy)/(dx)

If y=e^(x)+e^(-x)," then: "(dy)/(dx)=

If y=e^(x)+e^(-x)," then: "(dy)/(dx)=

If e^(x) +e^(y) =e^(x+y),then (dy)/(dx)=

If y =(e^(x) +e^(-x))/( e^(x) - e^(-x)) ,then (dy)/(dx) =

If y =( e^(2x)-e ^(-2x))/( e^(2x) +e^(-2x) ),then (dy)/(dx) =

If y=(e^(x)-e^(-x))/(e^(x)+e^(-x)), prove that (dy)/(dx)=1-y^(2)