Home
Class 11
MATHS
Prove that: [1+cotalpha - sec(pi/2+alph...

Prove that: `[1+cotalpha - sec(pi/2+alpha)][1+cotalpha + sec(pi/2+alpha)] = 2 cotalpha`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : [1+ cot alpha- sec (pi/2+alpha)] [1+ cot alpha+ sec (pi/2+alpha)]= 2 cot alpha .

Prove that [1+cot alpha-sec(alpha+pi/2)] [1+cot alpha+sec (alpha+pi/2)]=2 cot alpha .

Prove (i) "sin"^(2)(pi)/(8)+"sin"^(2)(3pi)/(8)+"sin"^(2)(5pi)/(8)+"sin"^(2)(7pi)/(8)=2 (ii) [1+cotalpha-sec((pi)/(2)+alpha)] [1+cotalpha+sec((pi)/(2)+alpha)]=2cotalpha

If tanalpha+cotalpha=2 , then

If tanalpha+cotalpha=2 , then

1/(tan3alpha-tanalpha)-1/(cot3alpha-cotalpha)=cot2alpha

The value of f(alpha)=sqrt(cos e c^2alpha-2cotalpha)+sqrt(cos e c^2alpha+2cotalpha) can be 2cotalpha (b) -2cotalpha (c) 2 (d) -2

The value of f(alpha)=sqrt(cos e c^2alpha-2cotalpha)+sqrt(cos e c^2alpha+2cotalpha) can be 2cotalpha (b) -2cotalpha (c) 2 (d) -2

If alpha = 2pi/7 prove that sec alpha + sec 2alpha + sec 3alpha = -4 .

(cotalpha+"cosec"alpha-1)/(cotalpha-"cosec"alpha+1)=(1+cosalpha)/(sinalpha)