Home
Class 12
MATHS
If 2nCn + 2nC(n–1) = 400 then 2n+2 C(n+1...

If `2nC_n + 2nC_(n–1) = 400` then `2n+2 C_(n+1)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

2nC_(n+1)+2*2nC_(n)+2nC_(n-1) is equals to:

2nC_(n+1)+2*2nC_(n)+2nC_(n-1) is equals to:

If "^(n+1)C_3 = 2 "^nC_2 , then n=

If ^nC_2 : ^(2n)C_1 = 3:2 find n

If "^(2n)C_3 : ^nC_2= 12: 1 , find n .

If (2n)C_3: nC_3=11:1 find n.

The expression nC_(0)+4*nC_(1)+4^(2)nC_(2)+.....4^(n^(n))C_(n), equals

If ^nC_0/2- ^nC_1/3+^nC_2/4-…….+(-1)^n ^nC_n/(n+2)= 1/(1999x2000) then n= (A) 1998 (B) 1999 (C) 2000 (D) 2001

The value of ,^nC_0 + ^(n+1)C_1 +^(n+2)C_2+……+^(n+k)C_k is equal to

The value of ("^n C_0)/n + ("^nC_1)/(n+1) + ("^nC_2)/(n+2) +....+ ("^nC_ n)/(2n) is equal to