Home
Class 10
MATHS
(x^(3))/((x-a)(x-b)(x-c))=k+(A)/(x-a)+(B...

(x^(3))/((x-a)(x-b)(x-c))=k+(A)/(x-a)+(B)/(x-b)+(c)/(x-c)rArr

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x^(3))/((x-a)(x-b)(x-c))=1 +(A)/(x-a)+(B)/(x-b)+(C)/(x-c) then A=

If (x^(3))/((x-a)(x-b)(x-c))=1 +(A)/(x-a)+(B)/(x-b)+(C)/(x-c) then A=

(x^(4))/((x-a)(x-b)(x-c))=P(x)+(A)/(x-a)+(B)/(x-b)+(C)/(x-c)rArr P(x)=

(x^(3))/((x-a)(x-b)(x-c))=1+(A)/(x-a)+(B)/(x-b)+(C)/(x-c) then A=

If (x^(4))/((x-a)(x-b)(x-c))= P(x)+(A)/(x-a)+(B)/(x-b)+(C)/(x-c) then P(x)=

Prove that (ax^(2))/((x -a)(x-b)(x-c))+(bx)/((x -b)(x-c))+(c)/(x-c)+1 = (x^(3))/((x-a)(x-b)(x-c)) .

Prove that (ax^(2))/((x -a)(x-b)(x-c))+(bx)/((x -b)(x-c))+(c)/(x-c)+1 = (x^(3))/((x-a)(x-b)(x-c)) .

(x^(2)+x+1)/((x-1)(x-2)(x-3))=A/(x-1)+B/(x-2)+C/(x-3) rArr A+C=