Home
Class 11
MATHS
(a+b)^(2)=a^(2)+b^(2)+2ab...

(a+b)^(2)=a^(2)+b^(2)+2ab

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a and vec b are two vectors,then prove that (vec a xxvec b)^(2)=a^(2)b^(2)-(a.b)^(2)

Some Important Identities - (i) (a+b)^(2)=a62+2ab+b^(2)( ii) (a-b)^(2)=a^(2)-2ab+b^(2)

Prove that |(2ab,a^(2),b^(2)),(a^(2),b^(2),2ab),(b^(2),2ab,a^(2))|=-(a^(3)+b^(3))^(2) .

Prove the following : |{:(2ab,a^(2),b^(2)),(a^(2),b^(2),2ab),(b^(2),2ab,a^(2)):}|=-(a^(3)+b^(3))^(2) .

Using properties of determinants prove that |(2ab,a^(2),b^(2)),(a^(2),b^(2),2ab),(b^(2),2ab,a^(2))|=-(a^(3)+b^(3))^(2) .

State whether the following statements are true or false . (a -b) ^(2) = a ^(2) + b ^(2) - 2 ab

solve: (a^(2) + b^(2) + 2ab) - (a^(2) + b^(2) - 2ab)

Remove the brackets and simplify : (a^(2)+b^(2) +2ab) -(a^(2)+b^(2)- 2ab)