Home
Class 11
MATHS
" 24."ab(x^(2))+y^(2))-xy(a^(2)+b^(2))...

" 24."ab(x^(2))+y^(2))-xy(a^(2)+b^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Factorise : (vi) ab (x^(2) + y^(2) ) - xy (a^(2) + b^(2) )

Factorise: ab (x ^(2) + y ^(2)) - xy (a ^(2) + b ^(2))

Fractorise: ab (x ^(2) + y^(2) ) + xy (a^(2) + b ^(2)).

If (x+1)/(x-1)=(a)/(b) and (1-y)/(1+y)=(b)/(a), then the value of (x-y)/(1+xy) is (2ab)/(a^(2)-b^(2)) (b) (a^(2)-b^(2))/(2ab) (c) (a^(2)+b^(2))/(2ab) (d) (a^(2)-b^(2)backslash)/(ab)

Equation of straight liens joining the origin and points of intersection of the line 3x+4y-5=0 and the curve 2x^(2)+3y^(2)=5 is (a)x^(2)-y^(2)=24xy(b)x^(2)+y^(2)=24xy(c)x^(2)+y^(2)=xy(d) None of these

If the lengths of edges of a cuboid are 2x,3y and 4xy, then its volume is: 24xy(b)9x^(2)y24x^(2)y^(2)(d)6x^(2)y^(2)

Divide : 36x^(2)y^(2) + 42 xy^(3) - 24 x^(3)y^(2) - 12 y^(5) by - 6y^(2)

Factorize each of the following expressions: x^(2)+2xy+y^(2)-a^(2)+2ab-b^(2)25x^(2)-10x+1-36y^(2)1-2ab-(a^(2)+b^(2))

Factorize each of the following expressions: x^(2)+2xy+y^(2)-a^(2)+2ab-b^(2)

If a=(x)/(x+y) and b=(y)/(x-y), then (ab)/(a+b) is equal to (a) (xy)/(x^(2)+y^(2)) (b) (x^(2)+y^(2))/(xy)( c) (x)/(x+y) (d) ((y)/(x+y))^(2)